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Abstract
Fine-grained visual categorization (FGVC) aims to discriminate similar subcategories that belong to the same superclass.
Since the distinctions among similar subcategories are quite subtle and local, it is highly challenging to distinguish them from
each other even for humans. So the localization of distinctions is essential for fine-grained visual categorization, and there
are two pivotal problems: (1) Which regions are discriminative and representative to distinguish from other subcategories?
(2) How many discriminative regions are necessary to achieve the best categorization performance? It is still difficult to
address these two problems adaptively and intelligently. Artificial prior and experimental validation are widely used in
existing mainstream methods to discover which and how many regions to gaze. However, their applications extremely restrict
the usability and scalability of the methods. To address the above two problems, this paper proposes a multi-scale and
multi-granularity deep reinforcement learning approach (M2DRL), which learns multi-granularity discriminative region
attention and multi-scale region-based feature representation. Its main contributions are as follows: (1) Multi-granularity
discriminative localization is proposed to localize the distinctions via a two-stage deep reinforcement learning approach,
which discovers the discriminative regions with multiple granularities in a hierarchical manner (“which problem”), and
determines the number of discriminative regions in an automatic and adaptive manner (“how many problem”). (2) Multi-
scale representation learning helps to localize regions in different scales as well as encode images in different scales,
boosting the fine-grained visual categorization performance. (3) Semantic reward function is proposed to drive M2DRL
to fully capture the salient and conceptual visual information, via jointly considering attention and category information in
the reward function. It allows the deep reinforcement learning to localize the distinctions in a weakly supervised manner or
even an unsupervised manner. (4) Unsupervised discriminative localization is further explored to avoid the heavy labor
consumption of annotating, and extremely strengthen the usability and scalability of our M2DRL approach. Compared with
state-of-the-art methods on two widely-used fine-grained visual categorization datasets, our M2DRL approach achieves the
best categorization accuracy.
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1 Introduction

Fine-grained visual categorization (FGVC) (Sfar et al. 2015;
Branson et al. 2014b) aims to discriminate numerous similar
subcategories that belong to the same basic category, such
as the fine distinction of animals (Wah et al. 2011), plants
(Nilsback and Zisserman 2008), cars (Krause et al. 2013) and
aircraft models (Maji et al. 2013). It is different from the tra-
ditional basic-level visual categorization (Gonzalez-Garcia
et al. 2018; Zhang et al. 2007), which aims to recognize
the basic-level categories. As shown in Fig. 1, basic-level
visual categorization only needs to recognize the image as
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Fig. 1 Illustration of the difference between traditional basic-level
visual categorization and fine-grained visual categorization, as well
as the two characteristics that fine-grained subcategories have: large
variance in the same subcategory as shown in the first line, and small

variance among different subcategories as shown in the second line.
Images in a birds and b cars are from CUB-200-2011 (Wah et al. 2011)
and Cars-196 (Krause et al. 2013) datasets respectively

“Birds” or “Cars”, rather than recognizing the image as the
subcategories of “Artic Tern” or “Caspian Tern”, which is the
goal of fine-grained visual categorization. The fine-grained
subcategories have two characteristics: (1) Large variance
in the same subcategory. The instances in the same sub-
category may look extremely different due to the different
postures, different angles of view, or different developmen-
tal periods. As shown in Fig. 1, the images in the first row
belong to the same subcategory (i.e. “Cardinal” or “Chevro-
let Cobalt SS 2010”), but they look quite different, which
are easily wrong recognized as different subcategories. (2)
Small variance among different subcategories. The instances
of different subcategories may look similarly in the global
appearance, i.e. similar shape or color. As shown in Fig. 1, the
images in the second row belong to different subcategories,
but look quite the same, which are easily wrong recognized
as the same subcategory. Therefore, the pivotal problem is to
discover the discriminative regions to distinguish the subcat-
egories, since these regions are the main distinctions among
subcategories.

However, it is quite challenging to draw these distinctions
even for humans, not to mention the computer. Researches
indicate that humans prefer to gaze at the object (Nei-
der and Zelinsky 2006). Eye movements always tend to
direct towards the regions with high feature density (Tatler
et al. 2006), texture (Itti and Koch 2001), and color contrast
(Parkhurst et al. 2002), which can be considered as salient
factors affecting object importance. For example, when rec-

ognizing an image, humans always first gaze at where the
object is, and then gaze at those parts which and how many
are distinct in the object, finally categorize the image, as
shown in Fig. 2.

Inspired by the gazes when humans categorize an image,
existing fine-grained visual categorization methods focus on
localizing the discriminative regions in the image, such as the
object and its parts. These regions contain the key distinctions
from other subcategories and help to achieve better cate-
gorization performance. There are two pivotal problems in
the discriminative localization: (1) “Which problem”:Which
regions are discriminative and representative to distinguish
from other subcategories? (2) “How many problem”: How
many discriminative regions are necessary to achieve the best
categorization performance?

Existing methods generally address these problems rely-
ingon the artificial prior (i.e. annotated information) or exper-
imental validation, which extremely restrict their usability
and scalability. Zhang et al. (2014) utilize R-CNN (Girshick
et al. 2014) with geometric constraints to detect the object
and its parts. Huang et al. (2016) utilize a fully convolutional
neural network to localize the parts of the object.We can con-
clude that the above methods generally address the “which”
and “how many” problems based on the annotated informa-
tion, such as the ground truth bounding box of the object
and part locations. However, not all the annotated informa-
tion is significant for the categorization. For example, the
“eye” part in CUB-200-2011 dataset (Wah et al. 2011) con-
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Fig. 2 Illustration of the gazes when humans recognize an image. First, gaze at where the object is, and then gaze at those parts which are distinct
in the object, finally categorize the image

tains too little information to draw the distinctions among
the similar subcategories, which is not necessary or helpful
for categorization. The dependence on artificial prior makes
the localization of discriminative regions subjective, and also
needs to be customized for different fine-grained visual cat-
egorization tasks.

Therefore, researchers begin to study how to automati-
cally localize the discriminative regions in the image without
relying on the artificial prior.Xiao et al. (2015) propose a two-
level attention method to select discriminative regions with-
out using the object and part annotation, which selects two
discriminative regions by experimental validation. Zhang
et al. (2016c) incorporate deep convolutional filters for both
parts selection and description. In this method, the number of
discriminative regions changes for different datasets in order
to achieve the best categorization accuracy. They empirically
set the discriminative region number by experimental vali-
dation, which makes them difficult to scale to other tasks or
domains. This increases the complexity and uncertainty of
these methods. Besides, they set the same number of dis-
criminative regions for all the subcategories, ignoring the
fact that different subcategories, or even different images
have different discriminative regions. This greatly reduces
the performance of fine-grained visual categorization, and
also makes the methods inflexible.

To simultaneously address the “which problem” and “how
many problem” in an adaptive and intelligent manner, this
paper proposes a multi-scale and multi-granularity deep
reinforcement learning approach (M2DRL) for fine-grained
visual categorization. It can automatically localize the dis-
criminative regions in a hierarchical manner, as well as
discover multiple discriminative regions with a single feed-
forward pass by a tree-structured traversing scheme. Besides,
due to the tree-structured traversing scheme and stop mech-
anism in reinforcement learning, our M2DRL approach can
determine the discriminative region number in an adap-
tive manner. Therefore, the usability and scalability are
guaranteed. Specifically, it adopts a multi-scale and multi-
granularity representation learning architecture via deep
reinforcement learning, which is driven by semantic reward
function. Images with multiple scales are taken as inputs
to the proposed architecture to exploit their comprehensive

information. For each scale, a two-stage deep reinforcement
learning (DRL) process is applied to exploit the variant gran-
ularity information of the discriminative regions in the image.
The Stage-I, named ObjectDRL, removes the background
noise in object alignment, and only reserves the foreground.
The Stage-II, named PartDRL, further mines the compelling
regions of the object,which are variant in numbers and granu-
larities for different subcategories. They provide different but
complementary visual information to boost the fine-grained
representation learning as well as the categorization accu-
racy. In the learning process, semantic reward is utilized as
tutorial information to guide themodel to localize the regions
with more salient and conceptual information.

To the best of our knowledge, our proposed M2DRL
approach is the first work to research the fine-grained visual
categorization task via deep reinforcement learning. The
main contributions of our M2DRL approach can be sum-
marized as follows:

(I) Multi-granularity localization learning is proposed
to address the “which problem” and “how many prob-
lem” in an adaptivemanner, instead of based on artificial
prior or experimental validation in existing methods
(Zhang et al. 2017; Xiao et al. 2015). We propose a
two-stage deep reinforcement learning to hierarchically
localize discriminative regions in different granularities
for the “which problem”, such as the object and its parts,
and adaptively determine the number of discriminative
regions for the “how many problem”.

(II) Multi-scale representation learning is proposed to
avoid the negative influence of variant scales of objects
and its parts on fine-grained categorization, which
boosts the categorization performance than only con-
sidering one scale. It contains two aspects: Multiple
scales of input images. We apply two types of scales,
where the larger one pays more attention to the detailed
information, and the smaller one pays more attention to
general information. Multiple scales of discriminative
parts. We obtain multiple discriminative part propos-
als, which contain the same semantic parts in different
scales and provide more information for categorization.
Thus multi-scale representation learning boosts the cat-
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egorization accuracy via localizingmore discriminative
regions in different scales, as well as jointly integrating
information of different scales in the region-based fea-
ture representation.

(III) Semantic reward function is proposed to enhance the
usability and scalability by avoiding the dependence
on the annotations of the object and its parts in rein-
forcement learning. It applies semantic information into
M2DRL to take the advantage of the salient and con-
ceptual visual information in the image. It consists of
two reward functions: Attention-based reward function
focuses on localizing the regions with more salient
information. Category-based reward function focuses
on localizing the regionswithmore conceptual informa-
tion. They jointly boost the performance of fine-grained
localization as well as categorization.

(IV) Unsupervised discriminative localization is proposed
to exploit the ability of M2DRL to localize discrimi-
native regions in an unsupervised manner, instead of
using manual annotations, such as image-level sub-
category label, ground truth bounding box, or part
locations. It avoids the heavy labor consumption of
annotating, and extremely strengthens the usability and
scalability of our M2DRL approach, which can facil-
itate the practical application of fine-grained visual
categorization.

Comprehensive experiments on two widely-used fine-
grained visual categorization datasets verify the effectiveness
of our proposed M2DRL approach, which achieves the best
categorization accuracy among state-of-the-art methods.

The rest of this paper is organized as follows: Sect. 2
briefly reviews related works: fine-grained visual categoriza-
tion, deep reinforcement learning and its application in object
detection. Section 3 presents our M2DRL approach in detail,
and Sect. 4 introduces the experimental results as well as the
experimental analyses. Finally, Sect. 5 presents the conclu-
sion and future works of this paper.

2 RelatedWork

In this section,we introduce theworks of three aspects related
to this paper: fine-grained visual categorization, deep rein-
forcement learning and its application in object detection.
Among these, fine-grained visual categorization is our focus,
and deep reinforcement learning is themain starting point for
our proposed M2DRL approach.

2.1 Fine-GrainedVisual Categorization

Most existing fine-grained visual categorizationmethods fol-
low the pipeline: first localize the object or its parts, and then

learn region-based features for categorization. An intuitive
idea is to directly utilize the annotations for the locations
of object and its parts. For example, CUB-200-2011 dataset
(Wah et al. 2011) provides the detailed annotations: a bound-
ing box of the object, and 15 part locations. The bounding
box of the object is used in the works of Chai et al. (2013)
and Yang et al. (2012) to learn part detectors, and even part
locations are used in previous works (Berg and Belhumeur
2013; Xie et al. 2013).

Since the annotations of the testing image are not avail-
able in the practical applications, some researchers use the
ground truth bounding box or part locations only at training
phase, and no knowledge of any annotations at testing phase.
Object and part annotations are directly used in training phase
to learn a strongly supervised deformable part-based model
(Zhang et al. 2013) or fine-tune the pre-trained CNN model
(Branson et al. 2014a). Krause et al. (2015) only use object
annotation at training phase to learn the part detectors, and
then localize the parts automatically in the testing phase.
Abovemethods heavily rely on the time-consuming and labor
consuming annotations, which limits their practicability.

Recently, there are some promising works attempting to
learn the part detectors in aweakly supervisedmanner, which
means that these works utilize neither object nor part annota-
tions in both training and testing phases. These works make
the practical application of fine-grained visual categoriza-
tion possible. Simon and Rodner (2015) propose a neural
activation constellations part model (NAC) to localize parts
with constellation model. He and Peng (2017b) propose
the part selection model with spatial constraints to local-
ize more discriminative parts. The aforementioned methods
mostly set the detector number according to the artificial
prior and experimental validation, which is highly limited
in flexibility and difficult for generalizing the methods to
the other domains. Therefore, we attempt to automatically
learn and mine which and how many discriminative regions
reallymake sense to categorization viamulti-scale andmulti-
granularity deep reinforcement learning.

2.2 Deep Reinforcement Learning

Reinforcement learning is the problem faced by an agent that
must learn behavior through trial-and-error interactions with
a dynamic environment (Kaelbling et al. 1996). As shown
in Fig. 3, in the standard reinforcement learning, on each
step of interaction, the agent conducts an action, and then
the environment changes its state and feeds back a reward
to guide the agent to obtain the long-term rewards. Recently,
deep learning has achieved great successes in many domains
due to its powerful automatic learning ability from a large
scale data. DeepMind has pioneered the combination of deep
learning and reinforcement learning, called deep reinforce-
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Fig. 3 Illustration of the standard reinforcement learning

ment learning, to achieve human-level performance across
many challenging domains.

Mnih et al. (2015) propose the Deep Q-Network (DQN),
which ignites the research of deep reinforcement learning.
Its key idea is to use deep neural networks to represent the
Q-network, and then predict total reward via the Q-network.
Inspired by this work, more variations of DQN are proposed.
Van Hasselt et al. (2016) propose Double DQN (D-DQN)
to address the over-estimate problem in Q-learning, which
can be generalized to work with large-scale function approx-
imation. Schaul et al. (2015) propose prioritize experience
replay, which replays important transitions more frequently
and learn more efficiently. Wang et al. (2016c) propose the
dueling network architecture to estimate state value function
and state-dependent action advantage function, so that con-
verges faster than Q-learning. As described in LeCun et al.
(2015), systems combining deep learning and reinforcement
learning are in their infancy, but they already outperform pas-
sive vision systems at classification tasks (Ba et al. 2014) and
produce impressive results in learning to play many different
video games (Mnih et al. 2015).

2.3 Object Detection Based on Deep Reinforcement
Learning

Object detection is one of the most fundamental and chal-
lenging open problems in computer vision, which not only
recognizes the objects but also localizes them in the images.
It has achieved great progress due to the application of deep
learning.Girshick et al. (2014) propose themethod of regions
with CNN features (R-CNN), which is a simple yet scalable
detection framework and achieves state-of-the-art results in
the Pascal and ImageNet benchmarks at that time.

Recently, deep reinforcement learning has been applied
into object detection and achieves promising results. Caicedo
and Lazebnik (2015) propose an active detection model for
localizing objects in scenes. They model the problem of
object detection with Markov decision process, and design
nine localization actions to help the agent to land a tight
bounding box that contains the target object. These actions
are organized in four subsets: actions to move the box in
the horizontal and vertical axes, actions to change scale, and

actions to modify aspect ratio. The reward function is formu-
lated using the Intersection-over-Union (IoU) between the
target object and the predicted box at any step. The proposed
model obtains the best detection performance among systems
that do not use object proposals for object localization. Jie
et al. (2016) propose an effective tree-structured reinforce-
ment learning (Tree-RL) approach to sequentially search
for objects by fully exploiting both the current observation
and historical search paths. Tree-RL has two advantages:
(1) Localize multiple objects via a tree-structured traversing
scheme in a single feed-forward pass. (2) Localize objects in
different scales, which improves its scalability. Mathe et al.
(2016) propose a principled sequential models with rein-
forcement learning,which accumulate evidence collected at a
small set of image locations in order to detect objects effec-
tively. Zhao et al. (2017b) propose a convolutional neural
network model of visual attention for image classification.
The attention is obtained via reinforcement learning, and
used to select useful key regions in the image to boost the
categorization accuracy. Inspired by these works, we pro-
pose multi-scale and multi-granularity deep reinforcement
learning to localize discriminative regions to further boost
the fine-grained visual categorization accuracy.

3 Multi-scale andMulti-granularity Deep
Reinforcement Learning Approach
(M2DRL)

In this section, we present the proposed multi-scale and
multi-granularity deep reinforcement learning approach
(M2DRL) for fine-grained visual categorization. It consists
of multi-granularity discriminative localization (MgDL) and
multi-scale representation learning (MsRL), which learn dis-
criminative region attention in multiple granularities and
region-based feature representation in multiple scales via
deep reinforcement learning. The framework of our M2DRL
approach is shown in Fig. 4.

Aiming at utilizing the comprehensive information of the
image, M2DRL takes multiple scales of the images as inputs
to the architecture. For each scale, a two-stage deep reinforce-
ment learning is applied to exploit the granularity information
of the discriminative region attention in the image. TheStage-
I deep reinforcement learning, named ObjectDRL, aligns
object via removing the background noise, and reserves
the foreground. The Stage-II deep reinforcement learning,
named PartDRL, further mines the compelling regions of the
object, which are variant in numbers and granularities for
each subcategory and each image. In the learning process,
semantic reward function is proposed to guide the action of
agent to obtain the long-term rewards.

The remainder of this section is organized as follows. First,
we briefly introduce the problem formulation in Sect. 3.1.
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Fig. 4 An overview of the proposed M2DRL approach, which consists
of multi-granularity discriminative localization and multi-scale repre-
sentation learning, which learns multi-granularity discriminative region
attention and multi-scale region-based feature representation with deep

reinforcement learning. Multi-granularity discriminative localization
adopts a two-stage deep reinforcement learning architecture: Object-
DRL and PartDRL

Second, we describe the details of multi-granularity dis-
criminative localization in Sect. 3.2. Third, Sect. 3.5 details
the multi-scale representation learning. Finally, prediction
pipeline is described in Sect. 3.6.

3.1 Problem Formulation

For a given image I , we formulate the discriminative local-
ization as the problem of maximizing a confidence score
function fc : B → B over the set of image region candi-
dates B:

b∗ = arg max
b∈B

fc(b) (1)

We address the problemviaMarkov decision process (MDP),
which is well suitable for modeling the discrete time sequen-
tial decision making process. The MDP consists of a set of
actions A, a set of states S, and a reward function R. They are
defined differently for ObjectDRL and PartDRL, and intro-
duced in detail as follows.

3.2 Multi-granularity Discriminative Localization

The given image I is considered as the environment, and
the goal of agent is to localize discriminative regions in the
image. The agent localizes a region at each step by conduct-
ing one action of A. Then, the state of the agent changes
based on the conducted action, which contains the informa-
tion of the current localized region and the past action history.

Simultaneously, a corresponding reward will be fed back to
the agent at the training phase, which may be positive or
negative. The reward guide the agent to obtain the long-term
rewards for better optimization. In the following paragraphs,
the details of actions, states and reward are described.

3.2.1 Discriminative Localization Actions

Inspired by Tree-RL (Jie et al. 2016), we define the discrimi-
native localization actions A as two action groups according
to their different effects, as shown in Fig. 5.

(I) Action Group 1

Action group 1 consists of five cropping actions to localize
discriminative region, and one special action to terminate the
localization process. Each cropping action crops the current
region to a certain sub-regionwith the cropping ratioα, corre-
sponding to cropping the current region to the top left corner,
bottom left corner, top right corner, bottom right corner and
the center respectively, where α ∈ [0, 1]. The cropping
actions can localize the regions with different scales, which
guarantees the scalability of the localization.

(II) Action Group 2

Action group 2 consists of four local translation actions
and one action to terminate the localization process. Each
local translation actionmoves the region downward, upward,
towards the right, and towards the left respectively byβ times
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Action Group 1 Action Group 2

Trigger Trigger

Fig. 5 An overview of the discriminative localization actions. It consists of two action groups, one is cropping action group with six actions, as
shown in green color, and the other is local translation action group with five actions, as shown in red color (Color figure online)

of the current region size, where β ∈ [0, 1]. The local trans-
lation actions can drive the agent to modify the localization
process as well as discover different discriminative regions.

It is noted that ObjectDRL and PartDRL adopt different
action groups. Only action group 1 is adopted in ObjectDRL.
In PartDRL, we hope that the agent can localize multiple
regions with different characteristics, which may be the dis-
tinctions from other similar subcategories and contribute to
discriminating the similar subcategories. So, we follow Tree-
RL (Jie et al. 2016) to adopt a tree-structured search scheme in
PartDRL,which has two branches: one only conducts actions
in group 1, and the other only conducts actions in group 2,
as shown in Fig. 6.

3.2.2 States

Once an action is conducted on the current region, the content
of the region will be changed deterministically, which means
that the state is changed. At action step t , the state of the agent
is represented as St = (vt , ht ), where vt denotes the feature
vector of the current localized region in the image, and ht

denotes the history vector of the past conducted actions. The
following paragraphs introduce the details of vt and ht .

The feature vector vt is extracted from the CNN model,
which is pre-trained on the ImageNet dataset (Deng et al.
2009). In our experiment, feature maps are extracted from
the layer “conv5_3” of the 16-layer VGGNet (Simonyan
and Zisserman 2014) as the initial features, followed by a
fully-connected layer to generate the final 4096-dimensional
feature vector. Inspired by Fast R-CNN (Girshick 2015), RoI
Pooling layer is applied to accelerate feature extraction for
each localized region.

The history vector ht = {H1, H2, . . . , HN } is a binary
vector, and indicates the past conducted actions, where N
denotes a pre-defined maximal action execution number per
image, and N = Nstep in ObjectDRL as well as N = Nlevel

in PartDRL. Hi donates a one-hot encoding of the i th con-
ducted action, whose dimension is 6 in ObjectDRL and 11
in PartDRL, corresponding to the number of actions respec-
tively. It is noted that the elements after t th element are all
zero vectors at action step t .

3.2.3 Semantic Reward Function

The reward function R reflects the effect of the con-
ducted action to the localization accuracy, where a positive
reward means that the conducted action is a good decision
to make the localization more accurate, while a negative
reward means a non-ideal decision. We propose a semantic
reward function to fully learn the discriminative and concep-
tual visual information via considering both attention-based
reward and category-based reward.

(I) Attention-based Reward Function

Intersection-over-Union (IoU) between the current local-
ized region and the ground truth bounding box of target
discriminative region, e.g. object and its parts, is widely used
to measure the effect of the conducted action for localization
(Jie et al. 2016). The reward function R Aa(s, s′) denotes the
reward received when the state of the agent changes from s to
s′ by conducting an action a, and its definition is as follows:

R Aa(s, s′) = sign(I oU (b′, g) − I oU (b, g)) (2)

where b denotes the current region, b′ denotes the region
obtained by conducting action a on the current region b,
g denotes the ground truth bounding box. I oU (b, g) =
area(b ∩ g)/area(b ∪ g), similar is I oU (b′, g). The above
reward function R Aa(s, s′) relies on the ground truth bound-
ing box, whose labeling is expensive.

Therefore, we propose a new reward function based on
the attention information, which avoids the heavy labor con-
sumption for labeling. Recentworks (Zhou et al. 2015, 2016)
have shown that the neurons in the convolutional layers actu-
ally have the ability to localize the object without supervision
of object annotation. Therefore, we first extract the attention
map M of the image, which indicates the representative and
significant regions for CNN to identify the subcategory of
image.

Given an image I , the activation of neuron u in the last
convolutional layer at spatial location (x, y) is defined as
fu(x, y). The attention value at spatial location (x, y) is com-
puted as follows:
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Fig. 6 Illustration of the tree structure scheme. At each node, the left
branch conducts action group 1 (as shown in green color), and the right
branch conducts action group 2 (as shown in red color). For each image

in the figure, the blue rectangle denotes the previous state, and the yel-
low rectangle denotes the current state (Color figure online)

M(x, y) = 1

|u|
∑

u

fu(x, y) (3)

where M(x, y) directly indicates the importance of activation
at spatial location (x, y) for categorizing the image. As atten-
tion map has significant impact on the final categorization
performance, we show the effectiveness of localization. The
curves of recall versus IoU overlap ratio are shown in Fig. 7.
For CUB-200-2011 dataset, the area under curve (AUC)
values of training and testing sets are 0.494 and 0.487 respec-
tively. For Cars-196 dataset, the AUC values of training and
testing sets are 0.478 and 0.471 respectively. Considering
that CAM is not trained with ground truth bounding box, the
localization results are promising.

It is noted that we design different attention-based reward
functions for ObjectDRL and PartDRL, which are presented
as follows.

Attention-based reward function for ObjectDRL. We per-
form binarization operation on the attention map with OTSU
algorithm (Otsu 1979), and take the bounding box that covers
the largest connected area as gatten . Therefore, the attention-
based reward function is defined as follows:

R Aa(s, s′) = sign(I oU (b′, gatten) − I oU (b, gatten)) (4)

The attention-based reward function fully utilizes the
attention information of the image, without relying on the
ground truth bounding box, and guides the agent to local-
ize the region with the highest saliency, corresponding to the
region of the target object.

Fig. 7 Recall versus IoU overlap ratio of CAM (Zhou et al. 2016) on
CUB-200-2011 and Cars-196 datasets

Attention-based reward function for PartDRL. We define
the reward function R Aa as follows:

R Aa(s, s′) = sign(Mean(b′) − Mean(b)) (5)

where function Mean(·) denotes the mean value of the atten-
tion map of the current region. Through the tree-structured
search scheme and the attention-based reward function, we
can localize different regions of the object, which can boost
the diversity of the feature representation.

(II) Category-based Reward Function

As is known to all, the category label directly provides
the conceptual information. It can guide the agent to local-
ize the region that is actually helpful for the categorization.
Therefore, we propose the category-based reward function
as follows:
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RCa(s, s′) = sign(Pc(b
′) − Pc(b)) (6)

where Pc(·) indicates the predicted score of the correspond-
ing region that is categorized as subcategory c, and c is the
annotated image-level subcategory label.

The semantic reward function R jointly considers the
attention and category information, and its definition is as
follows:

Ra(s, s′) = R Aa(s, s′) + RCa(s, s′) (7)

It is noted that we define a different reward function for
the trigger following (Caicedo and Lazebnik 2015), which is
to indicate that the current region contains the target object
or discriminative region. In ObjectDRL, its definition is as
follows:

ROtrigger (s, s′) =
{

+η, i f I oU (b, gatten) ≥ τ

−η, otherwise
(8)

where η is the trigger reward, and the trigger will be con-
ducted when the I oU value is over the threshold τ . η and
τ are set to 3 and 0.6 respectively in our experiments. In
PartDRL, its definition is as follows:

ROtrigger (s, s′) =
{

+η, i f Mean(b) ≥ τ

−η, otherwise
(9)

where η and τ are set to 3 and 0.5 respectively in our exper-
iments.

Through the ObjectDRL, the object region is obtained. To
further represent the object with more local and discrimina-
tive information, we learn to mine finer-granularity regions
on the localized object in the PartDRL.

3.3 Q-Learning for Discriminative Localization

We apply reinforcement learning to learn the discriminative
policy of maximizing the sum of the received rewards of
running an episode starting from the original image. Deep
Q-network (Mnih et al. 2015) is applied to solve the problem
of reinforcement learning. The detailed architecture of our
Q-network is shown in Fig. 8. There are three streams in our
Q-network, where the first one is for action prediction, the
second one is for attention-based reward calculation, and the
third one is for category-based reward calculation. Specifi-
cally, the feature of each proposal object or part bounding box
is extracted by RoI Pooling to reduce the cost of computa-
tion, and then fed into the streams of category-based reward
calculation (i.e. Pc(·) in Eq. (6) is computed as the soft-
max vector output from the third stream of the Q-network).
Before RoI Pooling, the feature maps are used to generate
the attention map as described in Sect. 3.2.3. In this way,

FC FC

Action History
Feature Maps

RoI Pooling

FC

4096 1024 1024

Actions

FC FC

Softmax 
Layer

Attention 
Map

Attention-based 
Reward

Category-based 
Reward

4096 4096

Fig. 8 Architecture of Q-network

the attention-based and category-based rewards can be cal-
culated for guiding the action prediction. For the stream
of action prediction, we concatenate the feature vector and
the action history vector, and then feed them into the fully-
connected layers. Finally, mean squared error (MSE) is used
to estimate the predicted values of the localization actions.
Different from (Jie et al. 2016; Caicedo and Lazebnik 2015),
we apply the fine-tuned CNN as the feature extractor at each
action step. The CNN is first pre-trained on the ImageNet
dataset (Deng et al. 2009), and then fine-tuned on the spe-
cific fine-grained dataset, such as CUB-200-2011 dataset
(Wah et al. 2011). It is because that fine-tuned CNN can
obtain a better attention map for each image, and extract
more powerful and discriminative features.At training phase,
the parameters of Q-network are updated by the agent run-
ning multiple episodes, whose behavior is ε-greedy (Sutton
and Barto 1998). At each step, the agent randomly selects
an action from the whole action set with probability ε, and
selects the best action according to the learned Q-network
in action group 1 for ObjectDRL with probability 1 − ε, a
random action from the two best actions in action group 1
and 2 respectively for PartDRL with probability 1 − ε.

3.4 Unsupervised Discriminative Localization

In this subsection, we explore the discriminative localization
in an unsupervised manner, without using any annotations.
From Sect. 3.2.1, we know that attention map can tell which
region is discriminative and significant for categorization.
Besides, we know that the CNN pre-trained on ImageNet
dataset has good generalization. Considering the attention
map extracted frompre-trainedCNNhas bad ability to reflect
the region of object but corresponds to some discriminative
local regions, we only explore the PartDRL in the unsuper-
vised manner.

Specifically, in unsupervised discriminative localization,
localization actions and states are the same as PartDRL,
which are described in Sects. 3.2.2 and 3.2.1. To avoid using
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the annotation information, we design the semantic reward
function RU with attention-based reward, and its definition
is the same as R Aa in PartDRL.

RU (s, s′) = sign(Mean(b′) − Mean(b)) (10)

But the CNN, which is used to extract the attention map
for each image, is not fine-tuned on the specific fine-grained
visual categorization dataset. It is a pre-trained CNN on the
ImageNet dataset, which is widely used in the computer
vision tasks. So fine-grained subcategory label is not used.
Besides, for the Q-learning in discriminative localization,
we initialize the parameters of convolutional layers with
the pre-trained CNN, and initialize the parameters of each
fully-connected layer from a zero-mean normal distribution
with standard deviation 0.01. Its training process is same as
PartDRL as described in Sect. 3.3, which is guided by the
semantic reward function RU . Thus, there is no annotation
used in the whole learning process.

3.5 Multi-scale Representation Learning

Aftermulti-granularity discriminative localization,weobtain
a variable number of discriminative regions for each image.
These discriminative regions, i.e. both object and its parts,
are in multiple scales, in which some regions are in small
scale. The problem of small scale causes that these regions
are difficult to localize, and have little detailed information
for CNNs to generate good feature representation. To address
this problem, we apply multi-scale representation learning.
It has two aspects: First, we crop the original images into dif-
ferent scales, and take them as the inputs of multi-granularity
discriminative localization. Different scales can provide dif-
ferent but complementary information, where large scale
pays more attention to the detailed information, such as fine
texture, and small scale pays more attention to general infor-
mation, such as holistic shape. Different scales make our
M2DRL approach obtain more discriminative regions and
extract better feature representation. In our experiments, we
choose the scales of 224 × 224 and 448 × 448. Second, in
PartDRL, we not only utilize the localized regions on the leaf
nodes, as shown in Fig. 6, but also utilize the other regions on
the tree except the region on the root node. Since regions in
different levels of tree structure are in different scales, they
provide more useful information for categorization.

3.6 Final Prediction

For a given image I , no more than Nstep − 1 regions are
obtained that correspond to the target object in ObjectDRL,
and no more than 2Nlevel − 2 regions are obtained that corre-
spond to the discriminative parts of the object in PartDRL.
Each region is fed to the fine-tuned CNN, i.e. 19-layer

VGGNetwith batch normalization (Ioffe and Szegedy 2015),
and received its prediction vector. For the regions obtained
by ObjectDRL, we select the region with highest predicted
score, denoted asmax(SO). For the regions obtained by Part-
DRL, we select the region with highest predicted score for
each level of the tree structure, denoted asmax(S Pl). Finally,
the final prediction is obtained by fusing the above predic-
tions via the following equation:

Score = λmax(SO) + (1 − λ)
1

Nlevel

Nlevel∑

l=1

max(S Pl) (11)

where λ is selected via k-fold cross-validation method.

4 Experiments

In this section, we conduct experiments on two widely-used
datasets for fine-grained visual categorization: CUB-200-
2011 (Wah et al. 2011) and Cars-196 (Krause et al. 2013),
taking more than fifteen state-of-the-art methods for com-
parison to verify the effectiveness of our proposed M2DRL
approach. Besides, comprehensive experimental analyses are
presented including baseline experiments, localization anal-
yses, as well as unsupervised discriminative localization to
verify the contribution of each component in our proposed
M2DRL approach.

4.1 Datasets

Here we briefly introduce two widely-used fine-grained
visual categorization datasets adopted in the experiments,
including CUB-200-2011 and Cars-196 datasets. We can
observe that images in the same basic-level category are very
similar in global appearance, which make the fine-grained
categorization highly challenging. Each dataset is divided
into two subsets, namely training set and testing set.

(I) CUB-200-2011 (Wah et al. 2011)1: It is themostwidely-
used dataset for fine-grained visual categorization, and
contains 11,788 images of 200 different bird subcat-
egories, which is divided as follows: 5994 images as
training set and 5794 images as testing set. For each sub-
category, about 30 images are selected for training and
11–30 images for testing. Each image has detailed anno-
tations as follows: an image-level subcategory label, a
bounding box of the object, 15 part locations and 312
binary attributes. All attributes are visual in nature, per-
taining to color, pattern, or shape of a particular part. In

1 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html.

123

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html


International Journal of Computer Vision (2019) 127:1235–1255 1245

our experiments, only image-level subcategory label is
utilized in the training phase.

(II) Cars-196 (Krause et al. 2013)2: It contains 16,185
images of 196 car subcategories, and is divided as fol-
lows: 8144 images as training set and 8041 images as
testing set. For each subcategory, 24–84 images are
selected for training and 24–83 images for testing. Each
image is annotated with an image-level subcategory
label and a bounding box of the object. The same as
CUB-200-2011, only image-level subcategory label is
utilized in the training phase.

4.2 EvaluationMetric

Here we introduce the evaluation metrics used in our exper-
iments to verify the effectiveness of our proposed M2DRL
approach, namely accuracy and Intersection-over-Union.

(I) Accuracy is adopted as the evaluation metric to evalu-
ate the categorization accuracy of our proposedM2DRL
approach compared with state-of-the-art methods,
which is widely used for evaluating the performance
of fine-grained visual categorization (Zhang et al. 2014,
2016c, e). Its definition is as follows:

Accuracy = |Ir |
|I | (12)

where |I |means the number of images in testing set, and
|Ir | counts the number of images which are correctly
categorized in testing set.

(II) Intersection-over-Union (IoU) (Everinghamet al. 2015)
is adopted to evaluate the overlap between the predicted
bounding box of discriminative region and the target
region, and its definition is as follow:

I oU = area(b ∩ g)

area(b ∪ g)
(13)

where b denotes the predicted bounding box of discrim-
inative region, g denotes the ground truth bounding box
of the target region, such as the object, b ∩ g denotes the
intersection of the predicted and ground truth bounding
boxes, and b ∪ g denotes their union.

4.3 Implementation Details

We describe the details of M2DRL in the following five
aspects: (1) For actions, the ratios of cropping action and
local translation actions are set to 0.9 and 0.1 respectively.
Tomake a trade-off between localization speed and accuracy,

2 http://ai.stanford.edu/~jkrause/cars/car_dataset.html.

we set the maximal action execution number Nstep = 10 in
ObjectDRL. The value of Nstep reserves the same for differ-
ent datasets. In ObjectDRL, cropping actions are conducted
by the agent, which crop the current region to a certain sub-
regionwith the cropping ratio 0.9. If the agent conducts Nstep

steps, the region at the Nstepth step is 0.99 = 0.387 of the
original images. While the object in the image is generally
not smaller than 0.387 of the original images. It is enough for
localization. Similarly in PartDRL, the level of tree structure,
Nlevel = 4 is enough for localizing the discriminative regions
of the object. (2) For semantic reward function, the trigger
reward η and threshold τ are set to 3 and 0.5 respectively.
(3) For Q-learning, the architecture of Q-network is shown
in Fig. 8. The region features are computed via RoI Pooling
layer with the shape of 512 × 7 × 7, and then concatenated
with the action history vector to be fed into fully-connection
layers. We initialize the parameters of convolutional layers
with the fine-tuned CNN, and initialize the parameters of
each fully-connected layer from a zero-mean normal distri-
bution with standard deviation 0.01. In the fine-tuning phase,
all layers are updated. The fine-tuned CNN is trained with
the original whole images and the image patches generated
by the data augmentation, which is to select relevant image
patches by object-level attention in Xiao et al. (2015). In the
training phase, the parameter ε starts with 1.0 and decreases
by 0.1 for each epoch. It is finally fixed to 0.1 after the first
10 epochs to let the agent focus on learning from experi-
ences generated by its own model. The optimization process
of Q-network follows Tree-RL (Jie et al. 2016). We use 16-
layer VGGNet (Simonyan and Zisserman 2014) as the CNN
model. We follow CAM (Zhou et al. 2016) to modify the
architecture of VGG network. Specifically, the layers after
conv5_3 are removed, resulting in a mapping resolution of
14 × 14. Besides, a convolutional layer of size 3 × 3, stride
1, pad 1 with 1024 neurons is added, followed by a global
average pooling layer and a softmax layer. In this way, the
network can identify the discriminative regions easily in a
single forward pass. (4) For multiple scales, we crop the
original images into scales of 224 and 448 × 448. (5) For
the training of ObjectDRL and PartDRL, they are trained in
a separate and parallel manner. First, we initialize the param-
eters of convolutional layers with the fine-tuned CNN, and
initialize the parameters of each fully-connected layer from a
zero-mean normal distribution with standard deviation 0.01.
Thenwe train them separately and parallel, which accelerates
the training speed. Thus we obtain the model of M2DRL.

4.4 Comparisons with State-of-the-Art Methods

This subsection presents the experimental results and anal-
yses of our M2DRL approach compared with the state-of-
the-art methods on CUB-200-2011 and Cars-196 datasets,
as shown in Tables 1 and 2. For fair comparison, the anno-
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Table 1 The results of categorization accuracy for our proposed M2DRL approach and the state-of-the-art methods on CUB-200-2011 dataset
(Wah et al. 2011)

Method Training annotation Testing annotation Accuracy (%)

Object Parts Object Parts

Our M2DRL approach 87.21

OPAM (Peng et al. 2018) 85.83

CVL (He and Peng 2017a) 85.55

RA-CNN (Fu et al. 2017) 85.30

HCA (Cai et al. 2017) 85.30

PNA (Zhang et al. 2017) 84.70

TSC (He and Peng 2017b) 84.69

FOAF (Zhang et al. 2016d) 84.63

PD (Zhang et al. 2016c) 84.54

LRBP (Kong and Fowlkes 2017) 84.21

STN (Jaderberg et al. 2015) 84.10

Bilinear-CNN (Lin et al. 2015b) 84.10

Multi-grained (Wang et al. 2015) 81.70

NAC (Simon and Rodner 2015) 81.01

PIR (Zhang et al. 2016e) 79.34

TL Atten (Xiao et al. 2015) 77.90

MIL (Xu et al. 2017) 77.40

VGG-BGLm (Zhou and Lin 2016) 75.90

InterActive (Xie et al. 2016) 75.62

Dense Graph Mining (Zhang et al. 2016b) 60.19

Coarse-to-Fine (Yao et al. 2016)
√

82.50

Coarse-to-Fine (Yao et al. 2016)
√ √

82.90

PG Alignment (Krause et al. 2015)
√ √

82.80

VGG-BGLm (Zhou and Lin 2016)
√ √

80.40

Triplet-A (64) (Cui et al. 2016)
√ √

80.70

Triplet-M (64) (Cui et al. 2016)
√ √

79.30

Webly-supervised (Xu et al. 2018)
√ √

78.60

PN-CNN (Branson et al. 2014a)
√ √

75.70

Part-based R-CNN (Zhang et al. 2014)
√ √

73.50

SPDA-CNN (Zhang et al. 2016a)
√ √ √

85.14

Deep LAC (Lin et al. 2015a)
√ √ √

84.10

SPDA-CNN (Zhang et al. 2016a)
√ √ √

81.01

PS-CNN (Huang et al. 2016)
√ √ √

76.20

PN-CNN (Branson et al. 2014a)
√ √ √ √

85.40

Part-based R-CNN (Zhang et al. 2014)
√ √ √ √

76.37

POOF (Berg and Belhumeur 2013)
√ √ √ √

73.30

HPM (Xie et al. 2013)
√ √ √ √

66.35

“Object” and “Parts” denote the annotation utilized in the training phase and testing phase of our proposedM2DRL approach as well as the compared
methods, where “Object” denotes the ground truth bounding box of the object and “Parts” denotes the annotated part locations. It is noted that
neither “Object” nor “Parts” is used in our proposed M2DRL approach

tations utilized in the training and testing phases are listed,
where “Object” denotes the ground truth bounding box of the
object and “Parts” denotes the annotated part locations. If the
column is empty, it means that the annotation is not used. It
is noted that neither the ground truth bounding box nor part

locations are used in our proposed M2DRL approach, only
image-level subcategory label is used.

OnCUB-200-2011 dataset, our approach achieves the best
categorization accuracy among all the methods, as shown in
Table 1. The best result of compared methods is achieved
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Table 2 The results of categorization accuracy for our proposed M2DRL approach and the state-of-the-art methods on Cars-196 dataset (Krause
et al. 2013)

Method Training annotation Testing annotation Accuracy (%)

Object Parts Object Parts

Our M2DRL approach 93.25

RA-CNN (Fu et al. 2017) 92.50

OPAM (Peng et al. 2018) 92.19

Bilinear-CNN (Lin et al. 2015b) 91.30

TL Atten (Xiao et al. 2015) 88.63

DVAN (Zhao et al. 2017a) 87.10

FT-HAR-CNN (Xie et al. 2015) 86.30

HAR-CNN (Xie et al. 2015) 80.80

PG Alignment (Krause et al. 2015)
√

92.60

ELLF (Krause et al. 2014)
√

73.90

R-CNN (Girshick et al. 2014)
√

57.40

PG Alignment (Krause et al. 2015)
√ √

92.80

BoT(CNN With Geo) (Wang et al. 2016a)
√ √

92.50

DPL-CNN (Wang et al. 2016b)
√ √

92.30

VGG-BGLm (Zhou and Lin 2016)
√ √

90.50

LLC (Wang et al. 2010)
√ √

69.50

BB-3D-G (Krause et al. 2013)
√ √

67.60

“Object” and “Parts” denote the annotation utilized in the training phase and testing phase of our proposedM2DRL approach as well as the compared
methods, where “Object” denotes the ground truth bounding box of the object and “Parts” denotes the annotated part locations. It is noted that
neither “Object” nor “Parts” is used in our proposed M2DRL approach

by OPAM (Peng et al. 2018), which integrates object-level
attention and part-level attention, the number of discrimina-
tive regions is set to 3, including one localized object and two
discriminative parts. Our M2DRL approach brings a 1.38%
categorization accuracy improvement. CVL (He and Peng
2017a), which jointly models visual and textual information,
uses both the original images and the object. Besides, it also
utilizes extern textural descriptions of the image in the train-
ing phase. However, our M2DRL approach still outperforms
it by 1.66%. RA-CNN (Fu et al. 2017) achieves the cate-
gorization accuracy of 85.30%, which utilizes three regions
in different scales. While it only achieves the categoriza-
tion accuracy of 84.70% with two regions in different scales,
which is 0.60% lower than using three regions. PNA trains
11 part detectors to localize the discriminative regions. TSC
(He and Peng 2017b) localizes three discriminative regions
to achieve the better categorization accuracy, including one
object and two discriminative parts. From the above analyses,
we can see that the number of discriminative regions is sig-
nificant for the categorization accuracy, but it is generally set
due to the artificial prior or experimental validation, which
leads thatmethod should be customized for different tasks, as
well as restricts the usability and scalability of fine-grained
visual categorization.

Our M2DRL approach tries to address this problem, via
adaptively localizing and determining “which” and “how

many” regions are discriminative in the image, boosting the
categorization accuracy as well as enhancing the usability
and scalability of fine-grained visual categorization. The
number of discriminative regions is set adaptively in the
process of multi-granularity discriminative localization. The
number is different not only for each subcategory but also
for each image, as shown in Fig. 12, which will be analyzed
in Sect. 4.5.2. Our M2DRL achieves the best categorization
accuracy based on the adaptively localized discriminative
regions.

Even comparedwith themethods which utilize the ground
truth bounding box in training phase or even in testing phase,
our M2DRL approach achieves better categorization accu-
racy. Furthermore, compared with the methods that utilize
the part locations, our M2DRL approach still achieves better
categorization accuracy.

Besides, the results of categorization accuracy on Cars-
196 dataset are shown in Table 2. The trend is similar
as CUB-200-2011 dataset, our proposed M2DRL approach
achieves the best categorization accuracy among state-of-the-
art methods, and brings a 0.75% improvement than the best
result of compared methods, which verifies the effectiveness
of our proposed M2DRL approach.
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Fig. 9 Recall versus IoU overlap ratio on the CUB-200-2011 dataset. Here we show the results of using Top 1, 5 and 10 proposals, as well as
compare with selective search (SS) (Uijlings et al. 2013), and region proposal network (RPN) (Ren et al. 2015)

4.5 Effectiveness of Discriminative Localization

In our M2DRL approach, ObjectDRL and PartDRL are con-
ducted in sequence to localize the discriminative regions in
two granularities: object and its parts. In this subsection, we
discuss the effectiveness of localization on the CUB-200-
2011 dataset with the scale of 224 × 224.

4.5.1 Effectiveness of ObjectDRL

ObjectDRL distinguishes the object from the background,
and represents the features of the global appearance. Here
we compute the recall of proposals at different IoU overlap
ratios with the ground truth bounding boxes, the same as
Ren et al. (2015). Figure 9 shows the results of using Top
1, 5, 10 proposals. We compare with selective search (SS)
(Uijlings et al. 2013), and region proposal network (RPN)
(Ren et al. 2015). The training of RPN is the same with (Ren
et al. 2015). We apply nine anchors with three scales and
three aspect ratios as Faster R-CNN. For training RPN, a
binary class label of being an object or not is assigned to
each anchor, which depends on the IoU overlap with the
ground truth bounding box. Top N proposals are selected
based on the confidence scores generated by these meth-
ods. Our M2DRL approach can generate 10 proposals for
each image, and Top N proposals are selected based on the
sequence of conducted actions. From Fig. 9, we can see that
recalls of SS and RPN are much lower than our M2DRL
approach, which verify the effectiveness of localization of
ObjectDRL. Figure 10 shows the results of ObjectDRL with
Top 1, 5 and 10 proposals. It is noted that the proposals are
generated automatically by ObjectDRL, thus the number of
proposals is variant for each image. The recall curve ofTop10
proposals is the best that verifies the effectiveness of Object-
DRL. In Fig. 11, we show the localized regions observed
and localization action sequence conducted by the agent in
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Fig. 10 Recall versus IoU overlap ratio on the CUB-200-2011 dataset.
Here we show the results of our M2DRL approach with Top 1, 5 and
10 proposals

ObjectDRL. We can see that the agent tries to guarantee the
discriminative region, i.e. the object, in the center of the pre-
dicted box via conducting the most suitable action in each
step. The red rectangle shows the final localization results,
which verifies the effectiveness of ObjectDRL. We also cal-
culate AUCs of the ObjectDRL, which are 0.501 and 0.508
on CUB-200-2011 and Cars-196 datasets, while the AUCs
of g_atten are 0.494 and 0.487 respectively, as mentioned
in Sect. 3.2.3. It verifies the effectiveness of the proposed
ObjectDRL, which boosts the localization performance by
reinforcement learning based on semantic reward function.

4.5.2 Effectiveness of PartDRL

PartDRL discovers the characteristics of the object, and
ties to draw the distinctions between similar subcategories.
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Fig. 11 Examples of localized regions observed by the agent, as shown
in the upper line, and localization action sequence conducted by the
agent in ObjectDRL, as shown in the lower line. The red rectangle
shows the final localization results by ObjectDRL, which will be fed

forward PartDRL to further explore more discriminative regions. The
images in first and second lines are from CUB-200-2011 dataset, and
those in third line are from Cars-196 dataset (Color figure online)
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Fig. 12 Results of the number of discriminative regions localized by our proposed M2DRL approach for each image in the testing set of CUB-
200-2011 and Cars-196 datasets. The coordinate axes denote the number of discriminative regions and its corresponding number of images in the
testing set respectively

Figure 12 shows the results of the number of discrimina-
tive regions localized by our proposed M2DRL approach
for each image in the testing set of CUB-200-2011 and
Cars-196 datasets. Our M2DRL aims to address the “which
problem” and “howmany problem” automatically and adap-
tively, thus the number of the localized discriminative regions
is different for each image. In our experiments, the num-
ber of discriminative regions is from 1 to 15. Due to the
adaptive and flexible number of discriminative regions, our
M2DRL approach achieves the best categorization accuracy,
outperforms state-of-the-art methods that set the number of
discriminative regions based on artificial prior or experi-

mental validation results. In Fig. 13, we show the localized
regions by the agent at each level of tree structure in PartDRL.
It is noted that the images of “Level 0” are the localized object
by ObjectDRL, not the original images. We can see that the
agent tries to discover different discriminative regions, and
discover regions in multiple scales at each level, which point
the important characteristics to boost the categorization accu-
racy. The yellow and red rectangles show the localization
results by action group 1 and 2 respectively, and they are
different regions, which verifies the effectiveness of the tree
structure in PartDRL.
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Fig. 13 Examples of localized regions by the agent at each level of
tree structure in PartDRL. The yellow rectangles show the localization
results by action group1, and red rectangles show the localization results

by action 2. Here we can see that the number of localized discriminative
regions is different for each image (Color figure online)
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Fig. 14 Illustration of our M2DRL approach to handle images with multiple object instances

4.5.3 Discussion of Handling Multiple Object Instances

Actually, our proposedM2DRL approach can handle images
withmultiple object instances by the collaboration ofObject-
DRL and PartDRL. Imageswithmultiple object instances are
existed in the two datasets, as shown in Fig. 14,where the first
image contains multiple birds from the same subcategory,
and the second image contains multiple cars from different
subcategories. We can see that ObjectDRL first localize the
region of the object in the image, as shown by the first two
lines of Fig. 14. The images of “Level 0” show the local-
ized object region by ObjectDRL, covering multiple object
instances when the images contain multiple object instances.
Then PartDRL is conducted on the object region, to further
localize the regions of one single object or discriminative
parts. For the example of CUB-200-2011, as shown in the
left of Fig. 14, PartDRL can localize the head and foot of the
bird. For the example of Cars-196, as shown in the right of
Fig. 14, PartDRL can localize the region of one single car
and the roof of the car. Through ObjectDRL and PartDRL,
the discriminative regions of the images can be discovered
to distinguish from other subcategories.

4.6 Effectiveness of Unsupervised Discriminative
Localization

In this subsection, we explore the effectiveness of unsu-
pervised discriminative localization (denoted as “UDL” in
Table 3) in fine-grained visual categorization task. From
Table 3, we can see that the application of unsupervised dis-
criminative localization achieves a promising performance.
It is an interesting and significant phenomenon that UDL
achieves the similar categorization accuracy with PartDRL,
while PartDRL utilizes the category label information. This
is owing to the good generation of CNN model trained on
ImageNet dataset. Unsupervised discriminative localization
even outperforms the methods using the ground truth bound-
ing box, such as Coarse-to-Fine (82.50% and 82.90%) (Yao
et al. 2016) and PGAlignment (82.80%) (Krause et al. 2015)
on CUB-200-2011 dataset, as shown in Table 1. This inspires
us to further explore the study and application of unsuper-
vised discriminative localization.
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Table 3 Effectiveness of unsupervised discriminative localization

Methods CUB-200-2011 Cars-196

MgDL 86.61 90.98

UDL 83.29 90.34

PartDRL 83.23 88.98

Table 4 Effectiveness of multi-scale representation learning

Methods CUB-200-2011 Cars-196

M2DRL 87.21 93.25

MgDL (224 × 224) 86.61 90.98

MgDL (448 × 448) 86.42 92.82

“MgDL” denotes the multi-granularity discriminative localization,
“224×224” and 448×448 denote different inputs with different scales

4.7 Effectiveness of Each Component in M2DRL

We conduct comprehensive experiments on CUB-200-2011
and Cars-196 datasets to verify the separate contribution of
each component in our proposedM2DRL approach. Detailed
experiments and analyses are as follows:

4.7.1 Effectiveness of Multi-scale Representation Learning

Here we verify the effectiveness of multi-scale representa-
tion learning. Different input images in multiple scales are
applied in our M2DRL, which provide different but comple-
mentary information to boost the categorization accuracy.
From Table 4, we can observe that integration of multiple
scale information can facilitate the category accuracy by at
least 0.6% on the two datasets.

4.7.2 Effectiveness of Multi-granularity Discriminative
Localization

Here we conduct experiments to verify the effectiveness of
multi-granularity discriminative localization (MgDL) with
the input of 224×224 scale on CUB-200-2011 and Cars-196
datasets, as shown in Table 5. “Baseline” denotes recogniz-
ing the original imageswith the fine-tuned 19-layerVGGNet.
“ObjectDRL” denotes that the localized objects are consid-
ered, without considering the localized discriminative parts
of the object. “PartDRL” denotes that the localized discrim-
inative parts are considered. “MgDL” denotes that both the
object and parts are considered. We can observe that:

(I) Compared with the “Baseline”, considering the local-
ized discriminative parts can improve 2.41% and 2.19%
on CUB-200-2011 and Cars-196 datasets respectively.
It is because the good ability of PartDRL to localize the

Table 5 Effectiveness of each stage in multi-granularity discriminative
localization (MgDL)

Methods CUB-200-2011 Cars-196

MgDL 86.61 90.98

ObjectDRL 85.29 89.93

PartDRL 83.23 88.98

Baseline 80.82 86.79

Table 6 Comparison between ObjectDRL and CAM

Methods CUB-200-2011 Cars-196

ObjectDRL 85.29 89.93

Baseline w/bbox 84.97 91.36

CAM (Zhou et al. 2016) 83.74 88.79

Baseline 80.82 86.79

discriminative regions, which is also in multiple scales.
These regions point out the subtle and local distinctions
that are distinguished from other similar subcategories.
PartDRL enhances the feature representation with more
variances and discrimination.

(II) ObjectDRL boosts the categorization accuracy signif-
icantly, which brings 4.47% and 3.14% improvements
compared with “Baseline” on CUB-200-2011 and Cars-
196 datasets respectively. The categorization accuracies
are also 2.06% and 0.95% higher than PartDRL. It
is because that the localized region of ObjectDRL
contains both the global features reflecting the appear-
ance, and the local features reflecting the salient visual
information. To further verify the effectiveness of our
ObjectDRL approach, we compare it with salient object
detection method (i.e. CAM) and baseline method with
ground truth bounding box, as shown in Table 6. We
use the CAM to generate discriminative regions that are
related to the objects, and use them for categorization,
achieving improvement than the baseline method. We
also show the results of baseline method with ground
truth bounding box, whose accuracies are 1.23% and
2.57% higher than CAM. However, considering that
CAM does not use ground truth bounding box, its
categorization results are promising. Our ObjectDRL
outperforms CAM by 1.55% and 1.14% on CUB-200-
2011 and Cars-196 dataset respectively, which is mainly
because of the different learning strategies of our Oject-
DRL and CAM. In the training phase, CAM only learns
from the original images. While our ObjectDRL can
learn more discriminative features with multiple scales
and granularities from the sub-regions of the image,
which are generated by conducting specific actions. So
our ObjectDRL can achieve better classification accu-
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racy. It is noted that, even without using ground truth
bounding box, our proposed ObjectDRL still achieves
nearly similar or even better performance than the base-
line method using ground truth bounding box, which
verifies the effectiveness of ObjectDRL.

(III) The integration of ObjectDRL and PartDRL can fur-
ther achieve more accurate result than only one-stage
DRL, e.g. 86.61% versus 85.29% and 83.23% on
CUB-200-2011 dataset. Compared with “Baseline”, an
improvement of 5.79% is achieved. It shows the com-
plementarity of ObjectDRL and PartDRL as well as
the effectiveness of the two-stage deep reinforcement
learning architecture. ObjectDRL and PartDRL have
different but complementary gazes at different regions
of the image, providing more salient and variant visual
information to boost the fine-grained representation
learning as well as the categorization.

4.7.3 Effectiveness of Semantic Reward Function

We conduct experiments to show the effectiveness of the pro-
posed semantic reward function with the input of 224× 224
scale on CUB-200-2011 and Cars-196 datasets. In Table 7,
“RA” denotes the attention-based reward functions, and
“RC” denotes the category-based reward function. From
Table 7, we can observe that:

(I) Attention-based reward and category-based reward
achieve similar categorization accuracy, which shows
that the attention information and category information
play similar roles in the fine-grained visual
categorization.

(II) The joint application of attention-based and category-
based reward functions further improve the catego-
rization accuracy due to the fact that the two reward
functions focus on different but complementary aspects:
attention-based reward provides the discriminative
visual information, and category-based reward provides
the conceptual visual information.

Table 7 Effectiveness of semantic reward function

Methods CUB-200-2011 Cars-196

MgDL 86.61 90.98

RA 85.79 90.37

RC 85.23 90.00

“RA” denotes the attention-based reward functions, and “RC” denotes
the category-based reward function

4.7.4 Effects of Using Grounding Truth Bounding Box

To further verify the effectiveness our proposed approach,
we conduct experiments in the following aspects:

(I) We use ground truth bounding box (bbox) in train-
ing phase. Specifically, in ObjectDRL, we use the
bbox based reward function, i.e. Eq. (2), instead of
attention-based reward function. In PartDRL, attention
information is still applied. The results are shown in
Table 8. We can see that using the bbox improves
the categorization accuracy only by 0.34% and 0.14%
on CUB-200-2011 and Cars-196 datasets respectively.
Even without using ground truth bounding box, our
ObjectDRL can achieve similar performance, which is
mainly because that the attention information points out
the regions with discriminative and significant informa-
tion for categorization. In Fig. 15, we show the original
images and their attention maps, as well as the bound-
ing boxes generated based on their attentionmaps (green
rectangles, denoted as “bboxam”), and the ground truth
bounding boxes (red rectangles, denoted as “bboxgt”).
For further comparing the attention maps of different
objects, we divide them into five groups by different
intersection over union (IoU) of bboxam and bboxgt , i.e.
0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1. We can observe
that the attention maps show the discriminative regions
of the images. When IoU>0.4, the bboxam can cover
the most regions of the objects, and there are 72.3% and
60.2% of the testing data with IoU>0.4 in CUB-200-
2011 and Cars-196 datasets respectively. Even when
IoU<0.4, the bboxam can still cover the main discrim-
inative regions of the objects, such as heads or bodies,
which are significant to distinguish from other subcat-
egories. In the stage of ObjectDRL, our target is to
localize the main discriminative regions of the images,
which are not always the regions of the entire objects.
Therefore, we can use the attention map to approximate
the ground-truth in ObjectDRL.

(II) We use ground truth bounding box as the input of
PartDRL, and show the results in Table 9. We can
see that using the bbox can improve the categoriza-
tion accuracy by 0.28% and 1.03% on CUB-200-2011
and Cars-196 datasets respectively. We also observe the
results of localized parts, and find that more discrim-

Table 8 Effects of using ground truth bounding box based reward func-
tion instead of attention-based reward function

Methods CUB-200-2011 Cars-196

MgDL 86.61 90.98

MgDL w/bbox 86.95 91.12
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IoU (0.8 ~1)

IoU (0.6~0.8)

IoU (0.4~0.6)

IoU (0.2~0.4)

IoU (0~0.2)

CUB-200-2011 Cars-196

Fig. 15 Attentionmaps of different objects inCUB-200-2011 andCars-
196 datasets

Table 9 Effects of using ground truth bounding box on PartDRL

Methods CUB-200-2011 Cars-196

PartDRL 83.23 88.98

PartDRL w/bbox 83.51 90.01

inative parts can be localized. However, considering
that the labeling of ground truth bounding box is time-
consuming and labor-consuming, as well as it is not
available in the real-word applications, it is not suit-
able to use ground truth bounding box in the test phase.
Evenwithout using ground truth bounding box, our Part-
DRL can achieve similar performance, which verifies
that the attention information is helpful for localizing
discriminative regions as well as fine-grained visual cat-
egorization.

5 Conclusion

To address the “which problem” and “how problem”, this
paper proposes the M2DRL approach for fine-grained visual
categorization. First, multi-granularity discriminative local-
ization localizes discriminative regions in different granular-
ities hierarchically (“which problem”), and determines the
number of discriminative regions adaptively (“how many
problem”). Then, multi-scale representation learning helps
to localize objects in different scales and encode images
in different scales, boosting the categorization performance.
Semantic reward function drivesM2DRL to fully capture the
discriminative and conceptual visual information, via jointly
integrating the attention-based reward and category-based
reward. Furthermore, unsupervised discriminative localiza-

tion avoids the heavy labor consumption of labeling, and
extremely strengthens the usability and scalability of our
M2DRL approach. Compared with state-of-the-art meth-
ods on two widely-used fine-grained visual categorization
datasets, our M2DRL approach achieves the best catego-
rization accuracy. Besides, the effectiveness of unsupervised
discriminative localization is also verified on these two
datasets, which achieves promising performance.

In the future, we devote to improving this work in the
following two aspects: First, integrate discriminative local-
ization and fine-grained visual categorization in the same
network, rather than separated processing by deep rein-
forcement learning and convolutional neural network, which
will further improve their performance in a complementary
manner. Second, unsupervised discriminative localization
achieves promising results, which should be further explored
to bringmore improvement in categorization accuracy aswell
as more scalability and usability of fine-grained visual cate-
gorization, marching forward the practical application. Both
of these two aspects will be employed to further improve the
fine-grained visual categorization performance.
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